



#### **AVT-373 Research Specialist Meeting on Emerging Technologies for Proactive Corrosion Maintenance**

#### Maintenance Oriented Corrosion Severity for Aircraft Predictive Maintenance Tool 'CorroVision'

#### Nabil Humphrey & Darren Roles - Australia

9 October 2023







### **The Corrosion Problem**



#### **Decreased Readiness/Availability**



NATO UNCLASSIFIED + STO EOP

Slide 2





#### **Operational Readiness & Availability Impacts**

#### Impacts to sustainment costs

- 60% of platform life-cycle costs are sustainment related
- Platform impacts
  - > Critical assets are unavailable for operational use.
  - Decreased mission success.
  - > Expedited resources come at a premium cost.
  - Unplanned maintenance disrupts planned budgets and allocations.
  - Reputational decline.
  - Competitors with proactive strategies gain a competitive edge







## A little bit of history...

- RAAF Orion Fleet
  - Corrosion servicing
    - 2 day schedule @ 6mths
    - 4 week actual
  - Wide area CIC application
    - Maintenance involvement
    - Optimised implementation
    - Improved data fidelity
    - Interval extended to 12mths
    - Manual trending & data analysis



Platform availability **>10%** 









#### NATO UNCLASSIFIED + STO EOP

Slide 5





## AI - A Transformative Approach

Revolutionise corrosion management with AI/ML

- **Big Data Utilisation:** Platform Agnostic Predictive Insights
- **Collaboration:** AI/ML Experts and Industry Professionals
- **Predicting Trends:** Historical Data Analysis
- Identifying Hotspots: Targeted Prevention
- Authoritative Decisions: Data-Driven Insights
- Real-world Case Studies: Successful Implementation

#### **But how?**







#### CorroVision

#### **Applied Operational Analytics**

#### eXplainable Artificial Intelligence (XAI)

- Auditable whitebox system
- •Can interrogate each subsystem against an objective standard
- As a result, the output is 'credible data'

#### **Predictive Analytics**

- •Provides quantified, probabilistic predictions of future operational conditions & requirements
- •Empower decision-makers rather than replace them

#### NATO UNCLASSIFIED + STO EOP





#### **Use-Case Architecture**



STO-AVT-373

NATO UNCLASSIFIED + EOP

Slide 8





## **Data Inputs**

- **Corrosion Maintenance Logs:** History of scheduled and unscheduled corrosion inspections indexed by a detailed assembly parts hierarchy.
- **Base Location Logs:** Anonymised with flight profile logs to form an overall usage severity index.
- Flight Profile Logs: Coarse-level profiles anonymised with base locations.
- [Optional] Sensor Data (e.g. RH, SIE)
- Treatment Logs (e.g. bird-baths)
- Scheduled Maintenance Plans
- Mission Requirements







## **Users and Roles**

- Information and controls are exposed to stakeholders depending on the decision-making level.
- Maintenance Role (O-4 Level): Component-level maintenance recommendations & corrosion forecasts.
- Fleet Schedule Role (O-5 Level): Aircraft-level maintenance recommendations & corrosion forecasts.
- Fleet Planning Role (O-6 Level): Fleet-level corrosion alerts/recommendations, maintenance prioritisation and optimisation.
- Owner / Mission Planning Role (O-7+ Level): Operational scenario planning, platform-level sustainment cost optimisation, acquisition optimisation.





### **Software Implementation**



NATO UNCLASSIFIED + EOP





## **The Model**

- Research Background
- Combating Temporal Clustering
- Model Anchor Points
- Orion Results: Temporal Cross-Validation
- Orion Results: Fleet Optimisation







### **Research Background**

#### Using a single-component Piecewise-Deterministic Markov Model (PDMM),



## To probabilistically generate thickness loss trajectories:





(a) One trajectory

(b) 100 trajectories

Optimal stopping for the predictive maintenance of a structure subject to corrosion Benoîte de Saporta<sup>1,2</sup>, François Dufour<sup>1</sup>, Huilong Zhang<sup>1</sup>, and Charles Elegbede<sup>3</sup> <sup>1</sup>Université de Bordeaux, IMB, CNRS UMR 5251 INRIA Bordeaux Sud Ouest team CQFD <sup>2</sup>Université de Bordeaux, GREThA, CNRS UMR 5113 <sup>3</sup>Astrium

#### Abstract

We present a numerical method to compute the optimal maintenance time for a complex dynamic system applied to an example of maintenance of a metallic structure subject to corrosion. An arbitrarily early intervention may be uselessly costly, but a late one may lead to a partial/complete failure of the system, which has to be avoided. One must therefore find a balance between these too simple maintenance policies. To achieve this aim, we model the system by a stochastic hybrid process. The maintenance problem thus corresponds to an optimal stopping problem. We propose a numerical method to solve the optimal stopping problem and optimize the maintenance time for this kind of processes.

#### Index Terms

Dynamic reliability, predictive maintenance, Piece-wise-deterministic Markov processes, optimal stopping times, optimization of maintenance.

#### NATO UNCLASSIFIED + EOP





## **Combating Temporal Clustering**

**Problem:** any metric constructed over inspection log data is liable to severely violate Lipschitz continuity assumptions required by the PDMM due to temporal clustering.

Solution:

- 1. Explicitly temporally cluster inspection log data and use a hindcasting dispersion model to temporally 'distribute' corrosion
- 2. Model Anchor Points



**AP-3 Corrosion Severity** 





## **Model Anchor Points**

- Model anchor points a<sub>-</sub>(x<sub>i</sub>) and a<sub>+</sub>(x<sub>i</sub>) are calculated from each corrosion maintenance log entry x<sub>i</sub>.
- *a*<sub>-</sub> is the pre-maintenance state, *a*<sub>+</sub> is the post-maintenance state.







## **Orion Results: Temporal Cross-Validation**

**Historical Data is Amputated:** 







## **Orion Results: Temporal Cross-Validation**

Model Predictions (90% CI):







## **Orion Results: Temporal Cross-Validation**

**Overlaid Observed Corrosion:** 



STO-AVT-373

#### NATO UNCLASSIFIED + EOP





## **Orion Results: Fleet Optimisation**



Predicted Corrosion Severity Increase over Fixed Period (2 yrs)







## **Summary and Future Work**

- CorroVision integrates physical analytical models with usage history, inspections, repairs, and treatment application effectiveness to predict corrosion.
- CorroVision is able to predict and optimise fleet-level maintenance requirements to largely eliminate unscheduled corrosion maintenance.
- The future path is gaining access to more datasets to optimise data fusion mechanics, and to further engage with stakeholders to drive technology maturation.







# CorroVision

An Innovative Heuristic Software Solution





#### NATO UNCLASSIFIED + EOP

Slide 21